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maturity (M) as described previously. All three plant growth 
components simulated the start of canopy senescence and M. 
Estimates of J were possible from the WEPS, and only the 
UPGM explicitly simulated all five developmental stages. The 
simulated phenological response to varying water deficits by the 
three models was evaluated using default crop parameters.

The SWAT, WEPS, and UPGM plant growth components 
simulated the end of crop growth associated with maturity 
(Fig. 4). Based on the model evaluation statistics, the WEPS and 
the UPGM were quite similar, and both models more accurately 
simulated M than SWAT. This difference was largely due to 
the default parameter for simulating M in SWAT being too 
high, resulting in a much later simulated date than the observed 
date. As expected, only the UPGM could simulate maturity 
differences observed among the Full and Dry treatments of the 
Greeley data set (resulting in UPGM having a lower RE).

All three plant growth components also simulated the start 
of leaf senescence, although the comparison was confounded 

by how this stage is defined (Fig. 5). Both WEPS and SWAT 
have a parameter setting the time through the life cycle that 
“leaf” senescence begins (i.e., meaning when the canopy leaf 
area index starts to decline and ignoring the senescence of the 
earliest leaves). The UPGM simulates the stage when the flag 
leaf completes its growth (FLC), which is when the canopy leaf 
area index should start to decline because no more leaves appear 
and older leaves are senescing. Regardless, both the SWAT and 
WEPS started leaf senescence much later than the observed 
date of FLC, suggesting the default parameters were set too 
late. When comparing the overall models, the model evalua-
tion statistics indicate that model accuracy improved from the 
SWAT to the WEPS to the UPGM. The UPGM showed a 
slight response to water deficits in the Greeley treatments (FLC 
was only measured for 2 of the 3 yr), which matched the very 
slight difference in the observed dates.

Only the UPGM was able to explicitly simulate the jointing 
developmental stage. The SWAT model provided no means to 

Fig. 4. Simulation of physiological maturity using default parameters. Greeley Wet is for Full irrigation treatment, Greeley Dry is for the 
dryland irrigation treatment, and Drake Dry is for the Drake Farm dryland experiment. Standard deviation bars for observed data are 
shown. d, index of agreement; DOY, day of year; RE, relative error; NOF, normalized objective function.

Fig. 5. Simulation of the start of canopy leaf senescence (i.e., decline in canopy leaf area index) using default parameters. Greeley Wet is for Full 
irrigation treatment (only observed data for 2008–2009 and 2010–2011), Greeley Dry is for the dryland irrigation treatment (only observed 
data for 2008–2009 and 2010–2011), and Drake Dry is for the Drake Farm dryland experiment. Start of canopy senescence was determined 
by the first day of decline in leaf biomass in the Soil Water Assessment Tool (SWAT) model and the Wind Erosion Prediction System (WEPS), 
and flag leaf growth complete (end of leaf appearance and growth) in the Unified Plant Growth Model (UPGM). Standard deviation bars for 
observed values are shown. d, index of agreement; DOY, day of year; RE, relative error; NOF, normalized objective function.
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are simulating, but little information on the range of values for 
a particular environment are provided. The UPGM provides 
parameters for the phenological responses to varying water defi-
cits, thereby allowing the user to avoid the need to do this. In 
addition, the UPGM provides default parameters for each crop 
based on general classifications for maturity grouping common 
for most crops. For instance, corn is often classified into 100-d, 
105-d, etc. maturity groups, and wheat is often ranked from 
early to late maturity classes. In the case of wheat, we provide 
default parameters for early-, medium-, and late-maturity classes 
as well as some specific varieties.

Although the approach used in the UPGM alleviates some 
problems with phenology parameterization, a major obstacle 
remains regarding how to parameterize the vast number of 
existing genotypes for a crop and the continued release of new 
genotypes. For several decades, considerable research (mostly 
on the flowering stage) has shed light on the genetic pathways 
controlling development (e.g., Brown et al., 2013; McMaster 
and Moragues, 2018) and genotype differences related to 
drought tolerance (e.g., Grogan et al., 2016a, 2016b). Numerous 
efforts have explored the hope that a priori setting of param-
eters using specific genes/alleles might avoid the prohibitively 
expensive phenotyping of numerous genotypes (e.g., Brown et 
al., 2013; Uptmoor et al., 2017; Welch et al., 2003; White and 
Hoogenboom, 2003).

Work is underway to take advantage of the ability of UPGM 
to explicitly simulate the response of many developmental 
events to varying water stress in models such as AgES and 
WEPS by better identifying the timing and activity of sources 
and sinks to improve aboveground partitioning (Fig. 1). For 
example, processes in SWAT and WEPS, such as the start of 
canopy senescence or partitioning to leaf, stem, and reproduc-
tive parts (WEPS only; Retta et al. [1996, 2000]) occur based 
on a static 0–1 input parameter representing the simulated 
proportion through the life cycle from planting/emergence to 
maturity. We are testing whether setting/adjusting the par-
titioning coefficients to leaves, stems, and reproductive plant 
fractions based on specific developmental stages that respond to 
varying water deficits will improve UPGM simulations of yield, 
biomass, and other plant traits.

CONCLUSIONS
The UPGM simulations were more accurate and had less 

relative error than SWAT or WEPS plant growth components 
with similar thermal time algorithms for predicting phenology. 
A primary reason was adding a water stress response function 
to UPGM within the AgES distributed watershed model. The 
UPGM explicitly simulated many more developmental events 
than the SWAT or WEPS models, providing opportunities for 
more clearly identifying sources and sinks present throughout 
the life cycle and enhancing partitioning algorithms. These 
results infer more robust spatial simulation of plant growth with 
water and air temperature feedback in models such as AgES.
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